namic

Expeditious Synthesis of 2‑Phenylquinazolin-4-amines via a Fe/Cu Relay-Catalyzed Domino Strategy

Feng-Cheng Jia, Zhi-Wen Zhou, Cheng Xu, Qun Cai, Deng-Kui Li, and An-Xin Wu*

Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central C[hi](#page-3-0)na Normal University, Hubei, Wuhan 430079, P. R. China

S Supporting Information

[AB](#page-3-0)STRACT: [A highly e](#page-3-0)fficient Fe/Cu relay-catalyzed domino protocol has been developed for the synthesis of 2-phenylquinazolin-4-amines from commercially available ortho-halogenated benzonitriles, aldehydes, and sodium azide. This elegant domino process involved consecutive iron-mediated $\begin{bmatrix} 3 + 2 \end{bmatrix}$ cycloaddition, copper-catalyzed S_NAr , reduction, cyclization, oxidation, and copper-catalyzed denitrogenation sequences. The formed structure is the privileged core in drugs and bioactive molecules.

Q uinazoline represents an important and abundant class of
introgen-containing heterocycles.¹ In particular, as one of the diverse quinazoline derivatives, the 4-aminoquinazoline nucleus is exemplified as a privileged [st](#page-3-0)ructure that exists in many pharmaceutical molecules and biologically active compounds,^{2,3} such as erlotinib (I) ,^{2a} geftinib (II) ,^{2b} prazosin (III) ,^{2c} and human adenosine A_3 receptor antagonist ${(\mathbf{IV})}^{2{\text{d}}}$ (Figure 1). In addi[tion](#page-3-0), 4-aminoquinazoli[ne](#page-3-0) derivatives [ar](#page-3-0)e often used [as](#page-3-0) synthetic intermediates for the direct synthesis [of](#page-3-0) biologically active molecules. 2d,3

Figure 1. Selected drugs or biologically active compounds with a 4 aminoquinazoline moiety.

Because of their great value, the synthesis of 4-aminoquinazolines has gained much attention. The current synthetic methods of this skeleton are mainly summarized as the following three types: (i) the nucleophilic addition/cyclization reaction of anthranilonitrile with benzonitriles; $2d, 4$ (ii) the coupling/ cyclization reaction of 2-bromobenzonitriles with amidines; 5 and (iii) the $S_NAr/cyclization$ reactio[n of](#page-3-0) 2-fluorobenzonitriles with amidine[s](#page-3-0);⁶ Alternatively, 2-substituted 4-aminoquinazolines can be prepared by the decoration of the existing quinazoline nucleus^{3b,7} (Scheme 1). Although these reactions provide ([Sc](#page-3-0)heme 1). Although these reactions provide efficient access to 4-aminoquinazolines, their applications are

limited by a lack of suitable substrates, poor substitution diversity, and the requirement for harsh reaction conditions. Therefore, the development of effective new methods for the facile construction of 4-aminoquinazolines is highly desirable.

Sodium azide (NaN_3) , which was used as a convenient nitrogen source, has been widely applied in organic synthesis.⁸⁻¹⁵ The common functions of NaN₃ mainly includes two types: (i) a 1,3-dipole to react with electron-deficient olefin[s,](#page-3-0)⁸ [a](#page-3-0)lkynes,⁹ or nitriles¹⁰ and (ii) a coupling partner participating in copper-catalyzed S_NAr reactions.¹¹ Substantial progre[ss](#page-3-0) has bee[n](#page-3-0) made in de[ve](#page-3-0)loping domino reactions based on these two fundamental reactions involving NaN₃.^{12−14} As part of our ongoing efforts toward developing novel copper-catalyzed domino reaction related to sodium azide, 15 herein [we pr](#page-3-0)esent a

Received: July 14, 2015 Published: August 24, 2015 novel Fe/Cu relay-catalyzed domino strategy for the direct synthesis of pharmaceutically significant 2-phenylquinazolin-4 amine derives from commercially available ortho-halogenated benzonitriles, aldehydes, and sodium azide (Scheme 1).

To explore the feasibility of this domino protocol, our study commenced with o -bromobenzonitrile $(1a)$, [benzaldeh](#page-0-0)yde $(2a)$, and sodium azide as model substrates to optimize the reaction conditions. Initially, various Lewis acids were screened in view of their potential catalytic activity toward initial $\begin{bmatrix} 3 + 2 \end{bmatrix}$ cycloaddition of nitriles with $NaN₃$ according to the existing literature,¹⁰ and FeCl₃ showed the highest efficiency in the presence of CuI/L-proline in DMF at 110 °C in a sealed vessel under air [\(](#page-3-0)Table 1, entries 1−9). Then several solvents were

CN				NH ₂
	NaN ₃	Ph'	Cul, L-proline conditions	
Br 1a		2a		3aa
entry	catalyst	solvent	temp (°C)	yield ^b (%)
1	CAN	DMF	110	62
$\overline{2}$	FeCl ₃	DMF	110	71
3	ZnCl ₂	DMF	110	42
$\overline{4}$	AICl ₃	DMF	110	45
5	InBr ₃	DMF	110	68
6	ZnBr ₂	DMF	110	11
7	Cu(OAc) ₂	DMF	110	trace
8	Pd(OAc)	DMF	110	trace
9	AgNO ₃	DMF	110	trace
10	FeCl ₃	DMSO	110	6
11	FeCl ₃	1,4-dioxane	110	trace
12	FeCl ₃	toluene	110	trace
13	FeCl ₃	DMF	80	53
14	FeCl ₃	DMF	100	64
15	FeCl ₃	DMF	120	70
16		DMF	100	trace
17 ^c	FeCl ₃	DMF	110	trace
18^d	FeCl ₃	DMF	110	trace
19 ^e	FeCl ₃	DMF	110	80

^aReactions conditions: 1a (0.5 mmol), 2a (0.5 mmol), NaN_3 (2.0 mmol), CuI (10%), L-proline (20%), and catalyst (10%) were heated \int in 3 mL of solvent in a sealed vessel under air for 12 h. $\frac{b}{b}$ solated yield.
 \int ²Absence of CuI^dAbsence of 1-proline ^e 30 mol % of EeCl, was used Absence of CuI. $\frac{d}{d}$ Absence of L-proline. $\frac{630}{3}$ mol % of FeCl₃ was used.

tested (Table 1, entries 10−12), and DMF proved to be the most effective solvent (Table 1, compare entries 2 and 10−12). Increasing or decreasing the temperature of the reaction did not lead to any further improvements in the yield (Table 1, entries 13−15). A control experiment confirmed that FeCl₃, CuI, and Lproline are indispensable elements in our catalytic system (Table 1, entries 16−18). Slightly improved efficiency was observed when the loading of FeCl₃ was increased from 10 to 30 mol % (Table 1, entry 19). Overall, the optimized reaction conditions were identified as 1a (0.5 mmol), 1.0 equiv of 2a, 4.0 equiv of sodium azide, 30 mol % of $FeCl₃$, 10 mol % of CuI, and 20 mol % of L-proline in 3 mL of DMF at 110 °C in a sealed vessel under air.

With the optimal reaction conditions in hand, we next investigated the scope of the domino process. A variety of aromatic aldehydes bearing different substituents were tested, and the results are summarized in Scheme 2. It was found that the transformation was very general; electron-neutral (4-H, 2-Me, 4- Me), electron-donating $(4\textrm{-}OMe, 4\textrm{-}OEt, 3,4\textrm{-}(OMe)_2)$, and

Scheme 2. Scope of Aryl Aldehydes a,b

^aReaction conditions: 1a (0.5 mmol), 2 (0.5 mmol), NaN_3 (2.0 mmol), FeCl₃ (0.15 mmol), CuI (0.05 mmol), and L-proline (0.1) mmol) in DMF (3 mL) at 110 °C in a sealed vessel under air for 12 h. ^bIsolated yields.

electron-deficient $(3-NO₂)$ groups were well tolerated, giving the corresponding products in moderate to good yields (42%− 82%, 3aa−ag). To our delight, the optimized conditions were mild enough to allow halo-substituted substrates (67%−73%, 3ah−aj), which provided the possibility for further functionalization. Furthermore, sterically hindered substrates such as 1 naphthaldehyde and 2-naphthaldehyde were also found to be suitable for this transformation (3ak−al, 57% and 74%). Meanwhile, the optimized conditions could be applied to heteroaryl aldehydes including furan-2-carbaldehyde, thiophene-2-carbaldehyde, and thiophene-3-carbaldehyde (3am− ao, 65%−78%). Furthermore, the structure of 3aa was unambiguously determined by X-ray crystallographic analysis (see the Supporting Information).

To further expand the scope of the substrates, a variety of ortho-halogenated benzonitriles and aryl aldehydes were then examined. Gratifyingly, electron-neutral (4-Me, 5-Me) groups on the phenyl rings of 2-bromobenzonitriles were compatible and provided the corresponding products in moderate to good yields (Scheme 3, 53−84%, 3ba−cg). Halogen-substituted 2-bromobenzonitriles (5-F, 5-Cl) also afforded the desired products in [moderate y](#page-2-0)ields (Scheme 3, 45% and 67%, 3da and 3ea). In addition, other ortho-halogenated benzonitriles such as 2 fluorobenzonitrile[, 2-chlorob](#page-2-0)enzonitrile, and 2-iodobenzonitrile all also exhibit good reactivity under the optimized conditions (Scheme 3, 74−82%, 3aa−aa).

Notably, this method could also be successfully applied in the [convenient](#page-2-0) synthesis of 1-(2-methoxyphenyl)-3-(2-(pyridin-3 yl)quinazolin-4-yl)urea (IV), which is a potent and selective human adenosine A_3 receptor antagonist demonstrated by van Muijlwijk-Koezen. 2d As shown in Scheme 4, the reaction of o bromobenzonitrile (1a) with sodium azide and nicotinaldehyde occurred smoothl[y u](#page-3-0)nder the stan[dard cond](#page-2-0)itions to afford the corresponding products 3ap in 77% yield. The product 3ap was

Scheme 3. Scope of o-Halogenated Benzonitriles and Aryl Aldehydes a,b

^aReaction conditions: 1 (0.5 mmol), 2a (0.5 mmol), NaN_3 (2.0 mmol), FeCl₃ (0.15 mmol), CuI (0.05 mmol), and L-proline (0.1 mmol) in DMF (3 mL) at 110 °C in a sealed vessel under air for 12 h. ^bIsolated yields.

Scheme 4. Synthetic Application

subsequently transformed to pharmaceutically active molecular IV according to the reported procedure. 2d

Having established the scope of our new domino reaction, we turned our attention to evaluate the r[eac](#page-3-0)tion mechanism. We initially investigated the reaction of o -bromobenzonitrile $(1a)$ with sodium azide (2 equiv) in DMF in the presence of $FeCl₃$ at 110 °C for 12 h, which gave 5-(2-bromophenyl)-1H-tetrazole (4) in 71% yield (Scheme 5a). When 5- $(2\text{-}b$ romophenyl $)$ -1Htetrazole (4) was treated with benzaldehyde (2a) and NaN₃ (2 equiv) in the presence of CuI in DMF at 110 °C in a sealed vessel under air for 12 h, the target product 2-phenylquinazolin-4 amine (3aa) was isolated in 84% yield (Scheme 5b). Furthermore, the reactions of 2-(1H-tetrazol-5-yl)aniline (5) and benzaldehyde (2a) were conducted under standard conditions, and the desired product 3aa was obtained in 83% yield (Scheme 5c). When 5-(2-bromophenyl)-1H-tetrazole (4) was treated with benzaldehyde $(2a)$ and NaN₃ $(2$ equiv) in the presence of CuI and L-proline in DMF at 80 °C for 6 h, 5 phenyltetrazolo $[1,5-c]$ quinazoline (6) and 2-phenylquinazolin-4-amine (3aa) were obtained in 51% and 27% yields, respectively (Scheme 5d). Next, when 5-phenyltetrazolo $[1,5-c]$ quinazoline (6) was heated at 110 °C for 12 h in DMF in the presence of CuI and L-proline, the substrate could be converted to the desired product 3aa in almost quantitative yield (Scheme 5e). Taken together, these control experiments clearly demonstrated that 5- (2-bromophenyl)-1H-tetrazole (4), 2-(1H-tetrazol-5-yl)aniline (5), and 5-phenyltetrazolo $[1,5-c]$ quinazoline (6) may be key intermediates in this reaction.

Scheme 5. Control Experiments

On the basis of the above observations and literature precedent,^{10−19} a possible reaction mechanism of this transformation was represented in Scheme 6. Initially, the sodium 5-

Scheme 6. Possible Mechanism

(2-bromophenyl)tetrazol-1-ide (A) was generated though an iron-mediated $[3+2]$ cycloaddition of o -bromobenzonitrile $(1a)$ with NaN_3 .¹⁰ Subsequently, intermediate A would undergo a copper-catalyzed S_N Ar with NaN₃ to afford intermediate **B** in the light of the *[ort](#page-3-0)ho-substituent* effect.^{10,16} Coordination of azide to copper, followed by an electrocyclization with the concomitant release of N_2 , would give the Cu(II[I\) co](#page-3-0)mplex $D,^{17}$ which would undergo a reduction with the aid of trace H_2O in DMF to give int[e](#page-3-0)rmediate 2-(1H-tetrazol-5-yl)aniline (5) .^{11c-e} Next, 2-(1H-1,2,3-triazol-5-yl)aniline (5) could easily condense with benzaldehyde (2a) to give imine inter[media](#page-3-0)te E. Then intramolecular nucleophilic attack of nitrogen to imine in E followed by oxidative dehydrogenation led to F. Eventually, the target product 3aa was obtained after final cooper-catalyzed denitrogenation process.¹⁸ It is also possible that 5phenyltetrazolo $[1,5-c]$ quinazoline (6) and 2-(1H-tetrazol-5yl)aniline (5) could be fo[rm](#page-3-0)ed via a synergistic oxidation−

reduction reaction between intermediates \bf{B} and $\bf{F.}^{19}$ Further mechanistic studies of the detailed process of reduction and oxidation in this reaction system are in progress.

In conclusion, we have developed a highly efficient Fe/Cu relay-catalyzed domino reaction for the facile synthesis of pharmaceutically significant 2-phenylquinazolin-4-amines from commercially available ortho-halogenated benzonitriles, aldehydes, and sodium azide. This elegant domino process involved consecutive iron-mediated $\begin{bmatrix} 3 & + & 2 \end{bmatrix}$ cycloaddition, coppercatalyzed S_N Ar, reduction, cyclization, oxidation, and coppercatalyzed denitrogenation sequences. Notably, sodium azide acted as dual nitrogen source in the construction of these fused N-heterocycles. Moreover, the free $NH₂$ generated from this reaction can be utilized for further manipulation. Application of this self-sequence strategy utilizing $NaN₃$ as a simple nitrogen donor for the synthesis of other fascinating N-heterocycles are underway in our laboratory.

■ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b02020.

Crystallographic data of 3aa (CIF)

Experimental procedures, product characterizations, and copies of the $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra(PDF)

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: chwuax@mail.ccnu.edu.cn.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (Grant Nos. 21272085 and 21472056) for financial support.

■ REFERENCES

(1) For selected papers, see: (a) Parhi, A. K.; Zhang, Y.; Saionz, K. W.; Pradhan, P.; Kaul, M.; Trivedi, K.; Pilch, D. S.; LaVoie, E. J. Bioorg. Med. Chem. Lett. 2013, 23, 4968−4974. (b) Ugale, V. G.; Bari, S. B. Eur. J. Med. Chem. 2014, 80, 447−501. (c) Juvale, K.; Gallus, J.; Wiese, M. Bioorg. Med. Chem. 2013, 21, 7858−7873.

(2) (a) Gundla, R.; Kazemi, R.; Sanam, R.; Muttineni, R.; Sarma, J. A. R. P.; Dayam, R.; Neamati, N. J. Med. Chem. 2008, 51, 3367-3377. (b) Omar, M. A.; Conrad, J.; Beifuss, U. Tetrahedron 2014, 70, 3061− 3072. (c) Wilson, L. J. Org. Lett. 2001, 3, 585−588. (d) van Muijlwijk-Koezen, J. E.; Timmerman, H.; van der Goot, H.; Menge, W. M. P. B.; Frijtag von Drabbe Künzel, J.; de Groote, M.; IJzerman, A. P. J. *Med.* Chem. 2000, 43, 2227−2238.

(3) (a) El-Azab, A. S.; Al-Omar, M. A.; Abdel-Aziz, A. A. M.; Abdel-Aziz, N. I.; El-Sayed, M. A. A.; Aleisa, A. M.; Sayed-Ahmed, M. M.; Abdel-Hamide, S. G. Eur. J. Med. Chem. 2010, 45, 4188−4198. (b) Marvania, B.; Lee, P. C.; Chaniyara, R.; Dong, H.; Suman, S.; Kakadiya, R.; Chou, T. C.; Lee, T. C.; Shah, A.; Su, T. L. Bioorg. Med. Chem. 2011, 19, 1987−1998.

(4) Seijas, J. A.; Vazquez-Tato, M. P.; Montserrat Martínez, M. ́ Tetrahedron Lett. 2000, 41, 2215−2217.

(5) Yang, X.; Liu, H.; Fu, H.; Qiao, R.; Jiang, Y.; Zhao, Y. Synlett 2010, 2010, 101−106.

(6) (a) Cargill, M. R.; Linton, K. E.; Sandford, G.; Yufit, D. S.; Howard, J. A. K. Tetrahedron 2010, 66, 2356−2362. (b) Yan, S.; Dong, Y.; Peng, Q.; Fan, Y.; Zhang, J.; Lin, J. RSC Adv. 2013, 3, 5563−5569.

(7) (a) Ahmad, O. K.; Hill, M. D.; Movassaghi, M. J. Org. Chem. 2009, 74, 8460−8463. (b) Yadav, M. R.; Grande, F.; Chouhan, B. S.; Naik, P. P.; Giridhar, R.; Garofalo, A.; Neamati, N. Eur. J. Med. Chem. 2012, 48, 231−243. (c) Itoh, T.; Mase, T. Tetrahedron Lett. 2005, 46, 3573−3577. (8) (a) Quiclet-Sire, B.; Zard, S. Z. Synthesis 2005, 19, 3319−3326. (b) Zhang, Y.; Li, X.; Li, J.; Chen, J.; Meng, X.; Zhao, M.; Chen, B. Org. Lett. 2012, 14, 26−29. (c) Quan, X. J.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Org. Lett. 2014, 16, 5728−5731.

(9) Li, J.; Wang, D.; Zhang, Y.; Li, J.; Chen, B. Org. Lett. 2009, 11, 3024−3027.

(10) For selected papers, see: (a) Gawande, S. D.; Raihan, M. J.; Zanwar, M. R.; Kavala, V.; Janreddy, D.; Kuo, C. W.; Chen, M. L.; Kuo, T. S.; Yao, C. F. Tetrahedron 2013, 69, 1841−1848. (b) Kumar, S.; Dubey, S.; Saxena, N.; Awasthi, S. K. Tetrahedron Lett. 2014, 55, 6034− 6038. (c) Mani, P.; Singh, A. K.; Awasthi, S. K. Tetrahedron Lett. 2014, 55, 1879−1882.

(11) (a) Zhu, W.; Ma, D. Chem. Commun. 2004, 888−889. (b) Andersen, J.; Madsen, U.; Björkling, F.; Liang, X. Synlett 2005, 2209−2213. (c) Markiewicz, J. T.; Wiest, O.; Helquist, P. J. Org. Chem. 2010, 75, 4887−4890. (d) Zhao, H.; Fu, H.; Qiao, R. J. Org. Chem. 2010, 75, 3311−3316. (e) Goriya, Y.; Ramana, C. V. Tetrahedron 2010, 66, 7642−7650.

(12) For representive papers of domino reactions initiated by $[3 + 2]$ cycloaddition involving NaN_3 , see: (a) Arigela, R. K.; Samala, S.; Mahar, R.; Shukla, S. K.; Kundu, B. J. Org. Chem. 2013, 78, 10476−10484. (b) Chen, Z. Y.; Wu, M. J. Org. Lett. 2005, 7, 475−477. (c) Gulevskaya, A. V.; Tyaglivy, A. S.; Pozharskii, A. F.; Nelina-Nemtseva, J. I.; Steglenko, D. V. Org. Lett. 2014, 16, 1582−1585. (d) Yan, J.; Zhou, F.; Qin, D.; Cai, T.; Ding, K.; Cai, Q. Org. Lett. 2012, 14, 1262−1265.

(13) For representive papers related to the formation of organic azide and sequential relay of click reaction with alkynes, see: (a) Pericherla, K.; Jha, A.; Khungar, B.; Kumar, A. Org. Lett. 2013, 15, 4304−4307. (b) Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org. Lett. 2008, 10, 3081−3084. (c) Liu, Z.; Zhu, D.; Luo, B.; Zhang, N.; Liu, Q.; Hu, Y.; Pi, R.; Huang, P.; Wen, S. Org. Lett. 2014, 16, 5600-5603. (d) Qian, W.; Winternheimer, D.; Allen, J. Org. Lett. 2011, 13, 1682− 1685.

(14) For representive papers related to the formation of organic azide and sequential relay of intramolecular N-atom transfer reaction, see: (a) Shang, X.; Zhao, S.; Chen, W.; Chen, C.; Qiu, H. Chem. - Eur. J. 2014, 20, 1825−1828. (b) Kumar, M. R.; Park, A.; Park, N.; Lee, S. Org. Lett. 2011, 13, 3542−3545. (c) Kim, Y.; Kumar, M. R.; Park, N.; Heo, Y.; Lee, S. J. Org. Chem. 2011, 76, 9577−9583. (d) Goriya, Y.; Ramana, C. V. Chem. Commun. 2013, 49, 6376−6378. (e) Li, K.; Chen, J.; Li, J.; Chen, Y.; Qu, J.; Guo, X.; Chen, C.; Chen, B. Eur. J. Org. Chem. 2013, 2013, 6246−6248. (f) Ou, Y.; Jiao, N. Chem. Commun. 2013, 49, 3473−3475. (g) Goriya, Y.; Ramana, C. V. Chem. Commun. 2014, 50, 7790−7792. (15) Jia, F. C.; Xu, C.; Zhou, Z. W.; Cai, Q.; Li, D. K.; Wu, A. X. Org. Lett. 2015, 17, 2820−2823.

(16) For papers involving the ortho-substituent effect, see: (a) Yang, D.; Wang, Y.; Yang, H.; Liu, T.; Fu, H. Adv. Synth. Catal. 2012, 354, 477−482. (b) Jia, F. C.; Xu, C.; Cai, Q.; Wu, A. X. Chem. Commun. 2014, 50, 9914−9916.

(17) For papers related to the Cu(III) complex, see: (a) Zhang, H.; Zhao, L.; Wang, D. X.; Wang, M. X. Org. Lett. 2013, 15, 3836−3839. (b) Huang, H.; Ji, X.; Tang, X.; Zhang, M.; Li, X.; Jiang, H. Org. Lett. 2013, 15, 6254−6257. (c) Yu, D. G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802−8805. (d) Dhar, D.; Tolman, W. B. J. Am. Chem. Soc. 2015, 137, 1322−1329.

(18) Shi, L. L.; Yang, H. J.; Jiang, Y. Y.; Fu, H. Adv. Synth. Catal. 2013, 355, 1177−1184.

(19) (a) Cenini, S.; Gallo, E.; Penoni, A.; Ragaini, F.; Tollari, S. Chem. Commun. 2000, 2265−2266. (b) Ragaini, F.; Penoni, A.; Gallo, E.; Tollari, S.; Gotti, C. L.; Lapadula, M.; Mangioni, E.; Cenini, S. Chem. - Eur. J. 2003, 9, 249−259. (c) Nguyen, Q.; Nguyen, T.; Driver, T. G. J. Am. Chem. Soc. 2013, 135, 620−623.